

WiFi Technical Briefing: One Zone

Sharyn Gravelle, VP, Wireless Phil Vlach, Technical Lead, Wireless Ron Mansi, Siemens Canada Limited

July 20, 2006

Today's Session

- Overview of Phase 1 deployment
 - Where are we today?
 - How did we get here?
- Technical presentation: Network architecture and design criteria
- In-depth view: network equipment
- Growth opportunities
- Q&A

- Wholly–owned subsidiary of Toronto Hydro Corporation
- Over 450 km within Toronto connecting over 440 buildings since 2001
- Data centre operates 24/7/365, servicing some of Canada's largest financial and business customers
- Experienced team of qualified telecom professionals

S THE NETWORK THE CITY IS THE NETWORK THE CITY IS THE NETWORK THE CITY IS THE NETWORK

Where we are

S THE NETWORK THE CITY IS THE NETWOR

Services we provide

- Dedicated Internet Service
- Transparent LAN Service
- Private Line Service
- Voice over Internet Protocol
- Video Transport Services
- Storage Transport Services
- Advanced High Capacity custom services

S THE NETWORK THE CITY IS THE NETWORK

Rationale: One Zone Catalysts:

- Provincial "smart meter" legislation
- Under-utilized fibre optic network asset
- Toronto Hydro acquisition of 160,000 street lights from the City of Toronto

Who benefits?:

- Increased value proposition to our existing customers
- Increased value of corporate assets
- New revenue stream new customer growth
- Increased value to shareholder
- Residents of City of Toronto via dividend to City

S THE NETWORK THE CITY IS THE NETWORK THE CITY IS THE NETWORK THE CITY IS THE NETWORK

Rationale: One Zone

Economic benefits:

- Increased efficiencies for Toronto Hydro Corporation
- Greater productivity for an increasingly mobile workforce
- Greater efficiencies for businesses looking to work smarter one zone, one tool
- Increased efficiencies for City agencies

One Zone

Copyright @ 2003 Microsoft Corp?land/ordts supplier's "Allrights reserved

One Zone Roll-out

- Phase 1: August 31, 2006 > Queen St. to Front St. > Church St. to Spadina Ave.
- Phase 2: October 2006
 - > College St. to Queen St.> Church St. to Spadina Ave.
- Phase 3: November 2006
 - > Bloor St. / Yorkville to College St.
 > Church St. to Spadina Ave.

- Phase 4: December 2006
 - > Queen St. to Front St.
 - > Spadina Ave. to Bathurst St.
- Phase 5: December 2006
 - > Queen St. to Front St.
 - > Church St. to Parliament St.

One Zone Access Strategy

- Utilizes IEEE 802.11 standards, provides Internet access for computers & devices within the range of a base station
- Uses radio waves across <u>a zone</u> not just a hotspot
- Licensing: Unlicensed frequency spectrum
- Infrastructure: Toronto Hydro street lighting attachments
- Backhaul: Existing fibre infrastructure for backhaul from wireless Access Points
- Access Points: Selection of high capacity, high availability mesh radio architecture
- Devices: WiFi enabled devices ubiquitous in the marketplace

Opportunities / Challenges

- RF design: coverage density, backhaul redundancy, morphologies, performance
- Power, grounding, real estate, infrastructure availability
 - East west vs. north south on Yonge Street
- Authentication, activation, accounting
- Security, privacy
- Level of support & monitoring: NOC (Network Operations Centre), field, vendor, customer
- Marketing strategy: pricing, partnering opportunities, competition
- Potential municipal service applications

Official Phase 1 launch will take place on September 7, 2006

- Feb 8/06 Issued Wireless RFP
- Mar 31/06 Awarded Wireless RFP

April 06 Vendor contract discussions; market studies; deployment planning

- May 8/06Vendor selection press release:
Siemens Canada Limited
- May 06 Phase 1 detailed network design and engineering

June 06 Deployment of One Zone network begins

Authentication Process

- Billing will be via credit card (consumer) and customer account (enterprise)
- Strong commitment to address authentication during 6-month 'free' period
 - Met with Police Services in May to discuss concerns with respect to facilitating inappropriate content and to offer solutions
 - Implemented a cellular phone SMS authentication process for free trial users
 - Will continue to review the viability of credit card authentication for the free trial period

Electromagnetic Fields (EMF)

Discussions held in May and early June with City of Toronto Public Health:

- Public Health is satisfied that our WiFi network complies with all pertinent safety guidelines and deems the network 'low risk'
- Complies with Health Canada Safety Code 6 and Industry Canada RSS-102
- Engineering team is committed to 'precautionary principle'.
- Network exceeds Toronto Public Health's recommendations for 100 x the distance factor required under Health Canada's Safety Code 6.

One Zone: Nuts & bolts

- 235 city blocks of blanketed WiFi coverage
- 225 Access Points
- 25 fibre connection points
- 200 metres radius of coverage at street level from each Access Points
- 3 types of Access Points
- Approximate weight of largest Access Points: 15 Kg

- Same frequency as baby monitors, garage door openers, cordless phones
- 30-40 minutes to install each Access Points
- 70/30 split between omni-directional and directional antennae
- 6 square kilometres of blanketed coverage within 2006
- Old City of Toronto: 97 square kilometres
- New City of Toronto: 630 square kilometres

PHIL VLACH Technical Lead, Toronto Hydro Telecom

WiFi Networks: Concept Architecture

Access Radio Network

- Allows end user to connect to the broader THTI network using standard 802.11b/g WiFi
- THTI network then routes traffic to and from the user to any connected private or public network, e.g. the Internet
- User connects to an Access Points (AP), which is a "point-to-point" link
- AP connects to several users at a time, which is "point-to-multipoint"

S THE NETWORK THE CITY IS THE NETWORK THE CITY IS THE NETWORK THE CITY IS THE NETWORK

Backhaul Radio Network

- User traffic is forwarded using 802.11a WiFi from one AP to another until it reaches a wired (fibre) interconnection point within the THTI core network
- "Meshing" between APs to route user traffic reduces a major expense in the network: *installing wired fibre connections*
- Intelligence engineered into the mesh allows it to be *self-healing* if a link between APs becomes unusable
- Mesh backhaul provides a cost effective, robust way of moving traffic through the network

"Mesh" Configurations

Single Radio Mesh

- Single channel used for both Access *and* Backhaul
- Easy and inexpensive to deploy
- Capacity limited on Backhaul *and* Access
- High latency bad for Voice

Dual Radio Mesh

- 802.11b/g used for Access
- 802.11a used for <u>shared</u> Backhaul
- Improvement over Single Radio Mesh
- Capacity limited on Backhaul
- High latency bad for Voice

"Mesh" Configurations

Multi-Radio Mesh used for One Zone

- 802.11b/g used for Access
- 802.11a used for <u>dedicated</u> Backhaul
- Highly scalable best suited for Metro deployments
- Low latency good for Voice
- High resilience to interference

Why Siemens/BelAir?

- Depth of product portfolio
- High capacity multi-radio APs
- Fully standards compliant radios
 - 802.11 a/b/g/i/n/s, 802.1X
- Fibre interface APs
- Highly integrated, functional and scalable suite of WIP & WAG solutions
- Experienced engineering teams with expertise in wireless network deployments

S THE NETWORK THE CITY IS THE NETWOR

Network Design: Objectives

Services Smart metering High speed data Voice (future) Video (future)

Performance Quality coverage

High capacity

- Traffic prioritization (QoS)
- High reliability
- Security
- Scalability
- Easy to deploy
- Fully standards based
- Cost effective initial rollout growth

Radio Network: Constraints

Real Estate

- Pole availability & suitability
- Multiple pole types
- Not all poles have 24hr power
- Grounding requirements ESA
- Certain areas have heavy foliage

Fibre Connections

- Right number to ensure reliability
- Duct availability
- Permitting required = time
- Cost

Building One Zone

Installation

- Toronto Hydro Street Lighting crews contracted for installation
- Pole inspections required
- Fibre availability surveys done
- Grounding installed
- Access Points installed
- ESA inspections
- APs turned on

Optimization

- Coverage verification
- Performance verification
- Parameter fine tuning

RON MANSI Business Development, Siemens Canada Limited

SIEMENS CANADA

- Who we are, what we do
- WiFi networks we've developed around the world
- Uniqueness of One Zone
- Partnership with BelAir
- Fully compliant with all Health Canada and Industry Canada safety codes

WIP & WAG Functionality

Q&A